
GranularNF: Granular Decomposition of Stateful NFV
at 100 Gbps Line Speed and Beyond
Ziyan Wu, Tianming Cui, Arvind Narayanan, Yang Zhang,

Kangjie Lu, Antonia Zhai, Zhi-Li Zhang
University of Minnesota – Twin Cities

ABSTRACT
In this paper, we consider the challenges that arise from the
need to scale virtualized network functions (VNFs) at 100
Gbps line speed and beyond. Traditional VNF designs are
monolithic in state management and scheduling: internally
maintaining all states and operations associated with them.
Without proper design considerations, it suffers from lim-
itations when scaling at 100 Gbps link speed and beyond:
the inability of efficient utilization of the cache because of
the contention due to the frequent control plane activities,
computational/memory-intensive tasks taking up CPU times,
shares states causing the synchronization among the cores.
We address these limitations by arguing for the need to

granularly decompose a VNF into data/control components
that are co-located within a server but can be independently
scaled among the cores. To realize the approach, we design a
"serverless" programming framework with novel abstraction
to optimize the data components that must process packets
at the line speed, reduce the contention of the data states
and enable run-time scheduling of different components for
improved resource utilization. The abstractions, combined
with the runtime system that we design, help NFV develop-
ers focus on the logic and correctness of VNF programming
without worrying about how VNFs may be scaled in or out.
We evaluate our platform by comparing it with monolithic
approaches using different workloads and by analyzing its
advantages of separation on scalability, performance deter-
minism, and feature velocity.

1 INTRODUCTION
Unlike traditional data centers, edge clouds have limited real
estate (e.g., rack space): packing more networking, e.g., with
100 Gbps network interface cards (NICs) and more cores
per server is crucial. Network Function Virtualization (NFV)
systems, e.g., implementing 5G core network functions, run-
ning in edge clouds therefore must be capable of processing
packets in software at 100 Gbps line speed and beyond.
VNF designs (see, e.g., [9, 17, 18]) often apply the SBA

(server-based architecture), where it decouples the high-level
policymaking into a separate network of network functions
using the idea of CUPS (Control and User Plane Separation)
and lets the data network functions communicate with the

Figure 1: (left) Monolithic NF; (right) Granularly Decom-
posed NF

control network function through a control message channel.
The architecture improves the flexibility of NF software but
the principle is not sufficient addressing the issue of scaling
stateful network functionwithin amulti-core server. Existing
programming abstractions [6, 8, 15] focus on the reusability
of packet processing modules. They compose different build-
ing blocks or elements into more complex network functions
and states, exploiting the reusability of different modules to
increase performance (Figure 1 left).
While previous works show considerable improvement

combined with a fast packet processing framework [4], there
are limitations when achieving line speed. Without addi-
tional design considerations, it suffers from limitations when
scaling at 100 Gbps link speed and beyond. First, the utiliza-
tion of the cache often suffers from interference because they
do not differentiate states/actions with different properties.
As a result, different states often contend with each other
whereas the states that highly impact the performance do
not reside in the cache. Second, there is a lack of proper
scheduling of routines that perform computational/memory-
intensive tasks. Scaling out often treats NF as a whole with
coarse resource allocation, regardless of the real bottlenecks.

For the efficient execution of a single stateful network func-
tion on an NFV system, we argue that in order to scale them
effectively on a multi-core system, we need to decompose it
into components with different properties. The granularly
decomposed NF (Figure 1 right) is an organization of inde-
pendently schedulable data components (data actions and
data states), control components (control actions and control
states), and offloading components, which communicate with

1



perfna’22, , online
Ziyan Wu, Tianming Cui, Arvind Narayanan, Yang Zhang,

Kangjie Lu, Antonia Zhai, Zhi-Li Zhang

Figure 2: (left) The Size of the Working Set of Instances;
(right) Impacts Performance for Stateful Load Balancers

each other through message passing. The data components
are responsible for per-packet processing, the control com-
ponents for policy-related computation and communication
with the remote policy server, and the offloading components
for CPU-intensive computation or memory-intensive tasks.
Compared to the monolithic NFs, the benefits of granu-

larly decomposed ones not only inherit the benefits from a
serverless framework such as independent scaling, flexible
placement, increased velocity of innovation of the data com-
ponents and control components, but also decouple the data
states from the control states, making the states of the data
components of the network functions fit into the L1/L2/Last
level cache, which is essential for the network functions
to scale 100Gbps [25] beyond on COTS (Commercial off-
the-shelf) hardware considering the per-packet processing
budget is under 6.7 ns.
While the granular decomposition is arguably the right

abstraction, realizing it practically is challenging due to: (1)
Keeping the cache footprint small is hard when the number
of active flows is high. For 100Gbps traffic and beyond, the
number of flows is generally high which leads to a large flow
table that exceeds the capacity of the cache. (2) The activities
of the control/offloading components will negatively impact
the performance of the data components. (3) Shared states
among the cores will negatively impact the performance.
We observe an opportunity to solve those challenges by

(1) a smaller fast table for storing per-flow states. This is
driven by the insight that prioritizing flows with the higher
occurrence or higher priority for efficient utilization of the
private cache of the flow. (2) a runtime system that supports
flexible placement of the data components and control/of-
floading components, placing them on different cores when
those cause contention, cache allocation technology to limit
the resources usages of actions with lower priority. (3) a
mechanism that delays the synchronization of shared states,
driven by the insight that shared states do not need updates
on a per-packet basis.

We presentGranularNF (Section 4), amicro-architecture-
aware serverless network platform/abstraction that supports

Figure 3: Shared States with High Access Frequency
Impacts Performance

Figure 4: Frequency of Suspicious Packets Impacts
Performance of IDS

the aforementioned programming framework on the COTS
hardware. GranularNF consists of a director as the control
plane and the runtime as the data plane of the system. It
provides an interface for the application developers to de-
fine data/control/offloading action/states without worrying
about the detail of scheduling and the burdensome proce-
dures of upgrading components. We illustrate the benefit
(section 5) of the system using a load balancer, IDS, and 5G
UPF as examples. We have shown that (1) the granular de-
composition can improve the system throughput by better
utilization of the cache. (2) the system inherits the benefits
of SBA design: horizontally scalable, and velocity.

2 MOTIVATION
We argue that the existing monolithic abstraction of net-
work functions is not sufficient. Scaling stateful NFs imposes
serious challenges due to (i) states that cannot fit into the
private cache of a core lower the performance (ii) shared
states among the NF instances result in the diminishing re-
turn in scaling (iii) (high frequency of) calling of routines
that have computational complexity impacts the data plane
performance. All these three factors will be influenced by the
dynamic traffic patterns during the run time. We use three
common NFs to illustrate the challenges mentioned.

The first example is a stateful load Balancer, and we mea-
sure its single-core performance. NF instances with a high
number of flows (large working set) result in bad perfor-
mance. As illustrated in figure 2, when the number of flows
grows, and the state can no longer fit in the cache, the L1
miss rate increases, and the utilization of the L2 and L3 cache

2



GranularNF: Granular Decomposition of Stateful NFV at 100 Gbps Line Speed and Beyond perfna’22, , online

significantly degrades. For the optimal placement of NF in-
stances, it is essential to be aware of the size of the working
set of the corresponding instance.

To illustrate the performance bottleneck caused by shared
states, consider the traffic accounting of a UPF with shared
states among network instances. For per-packet network
monitoring, shared states with high accessing frequency will
impact performance (figure 3). The higher frequency of ac-
cess to the shared state is, the more performance degradation.
The cause is the contention of the access to the data structure
as well as the contention in the LLC. For those states evicted
from the LLC, the associated operations become memory-
bound [26].
Taking IDS as an example, higher network traffic can

causes non-negligible computation overhead. In the exam-
ple, we send evenly balanced traffic to each core but with
a different number of suspicious flows. Instances receiving
the suspicious traffic will go through a series of calculations
(pattern matching) to make decisions on whether or not to
blacklist the flows. As illustrated in the figure 4, the overhead
is unevenly distributed on each instance even though the
throughput of the input traffic is the same.

These examples show how the performance of the NF can
be influenced by different characteristics of the components.
These behaviors motivate us to break down monolithic NFs
to give the right abstractions to describe their behavior. Next,
we show how we can describe example stateful NFs using
our abstractions.

3 PROGRAMMING EXAMPLES
3.1 Load Balancer
The main function of a load balancer (figure 5 left) is to map
and rewrite m (public/virtual) destination IP to n (private/-
physical) IP addresses (e.g., those of n backend servers). The
flow mapper is a data action that will map the packet desti-
nation IP address to a new server address. The flow mapper
contains a classifier that will differentiate whether a flow is a
new flow. If it is an old flow, it will rewrite the header based
on the mapping. If it is a new flow, it will send the messages
to the server selector which is a control component to select
the new destination address according to the policy.

3.2 IDS
For an IDS (figure 5 middle), it needs to inspect the content
of the traffic to decide whether to blacklist the flow. The
data state consists of a white list of flows and a black list of
flows and a list of inspection rules. The white-list of flows
allows the incoming flows to be forwarded without further
inspections. The black-listed flows are blocked. Besides the
matching process, the regular expression matching engines
will use the inspection rules to examine the payload of the

packets. The policy such as the list of inspection rules can
be configured by the remote policy server.

3.3 5G UPF
For a 5G UPF (figure 5 right), it acts as a router between the
Access Network and Data Network. The data actions will
handle uplink and downlink traffic. It will read the data states
to map a part of the 5-tuple to the PDR (Packet Detection
rule) which defines how to handle the packets (forwarding,
buffering, dropping, accounting). The policy of the rules is
defined as installed by the SMF (Session Management Func-
tion). The control actions handle the request from the SMF
and the control states stores the PFCP (Packet Forwarding
Control Protocol) session states. The buffer server contains
a memory pool, storing the downlink packets when the user
devices are idle. While the forwarding table part of the data
states can be duplicated among the cores, the accounting
part is shared among the cores.

4 SYSTEM DESIGN
We schematically depict the overall system architecture in
Fig. 6. The system has two subsystems: the director and the
runtime. They communicate with each other through TCP.
The director sends commands to configure/control the run-
time, and the runtime is responsible for executing network
functions.
Director (Fig 6 left) is the control plane of the system, re-

sponsible for the logical representation of NF, resources man-
agement of the physical machines underlying the runtime,
setting up deploying plan, analyzing metrics/logs collected
from the run time to support auto-scaling, placement. NF
model is a registry of all the available NFs, with the infor-
mation on the representation (granular decomposition) of
an NF, the properties of actions and states, and the depen-
dencies among the actions. Resource Management Module
contains information about how many cores the physical
machine has, cache size, and memory size. The goal of the
runtime model is to characterize the current performance
using metrics such as the throughput of each worker and
micro-architecture metrics such as L1/L2/L3 cache hit rate.
The PCM module [3] on the runtime will send metrics col-
lected to the director periodically. The orchestration layer
is where we implement our agent for orchestration tasks
(auto-scaling, auto-placement). This module aims to provide
an automated solution for reducing the space of scaling and
placement strategies for optimal performance and efficiency.
The goal of the runtime (Fig 6 right) is to provide en-

vironments for the NFs to execute. More specifically, it is
responsible for fast packet receiving/sending, scheduling dif-
ferent actions to execute and route the messages to them
correctly. The worker has exclusive resources (CPU times,

3



perfna’22, , online
Ziyan Wu, Tianming Cui, Arvind Narayanan, Yang Zhang,

Kangjie Lu, Antonia Zhai, Zhi-Li Zhang

Figure 5: Decomposed NF Examples: (left) load balancer; (middle) IDS: (right) UPF

Figure 6: (left) Director; (right) Runtime

cache, NIC queues, RSS buckets) of a core. A worker also has
a mailbox implemented by a ring structure to send messages
to other workers. When a worker gets the next action, if the
core id of the action is on the other core, the worker will put
the message into the mailbox and the destination worker can
receive it using its mailbox.
Data State Management: It is hard to fit the state into the
cache because the number of flows is high hence a larger flow
table. But the performance can be improved if we exploit the
spatial locality of the flow table and the temporal locality of
the arrived flows. For each flow table in the data state, we
maintain a fast table and a slow table. The fast table stores
the most frequently accessed flows and it is more compact
to leverage the spatial locality. The slow table stores all the
mapping of the flows. The runtime will periodically update
the fast table based on the cache miss rate provided by the
profiling modules and the arrival pattern for the flows.
For the shared state management, we make a trade-off

between the freshness of the shared states and the perfor-
mance. Instead of updating the shared state on a per-packet
basis, we let each core running data actions keep its own
private state. The coordinators will periodically do a merg-
ing on the private states of each data action. By sacrificing
the freshness of the shared states, we avoid the downside

of frequent synchronization of different cores to access the
shared states.
Minimizing Interference on the data components:While
the control components can negatively impact the perfor-
mance of the data components, the performance requirement
of the control components is much lower compared to the
data plane, which means that the performance of the con-
trol components will not benefit much from the cache and
frequent message exchanging. The overhead of frequent mes-
sage passing can be reduced through batch processing. The
CAT (Cache Allocation Technology) of the Intel CPU feature
set can help to limit the number of ways that the control
components can use to decrease the interference among the
data components and control components. For the offloading
components, flexible placement of them to other cores/sock-
ets can relieve the bottleneck on the data plane.
Sharding: By sharding, the state of the network functions
is partitioned. To achieve better load balancing among each
instance, we set the number of shards greater than the num-
ber of cores. For better resource utilization, each shard can
be freely migrated from one core in the runtime to the other
core by configuring the RSS buckets dynamically.
Implementation:We implement the platform using DPDK
for fast packet processing. We implement the load balancer
from scratch. For the IDS, we use the code from tiny-regex-
c[5] to do the regular expression matching for the payload.
For the 5G UPF, we implement a version by extracting the
dataplane components of the PDR matching, encapsulation,
decapsulation, routing from gtp5g[1], the logic of the buffer
server, and PFCP request handlers from free5gc [2]. Com-
pared to the kernel module that the original implementation,
the kernel-bypass techniques that we apply will also reduce
the data plane and control plane interference by eliminating
the cost of context switching of the user space and kernel
space.

5 EVALUATION
Experiment setup: To evaluate our platform, we use two
machines with Intel(R) Xeon(R) Platinum 8168 CPU which

4



GranularNF: Granular Decomposition of Stateful NFV at 100 Gbps Line Speed and Beyond perfna’22, , online

Figure 7: Improvement of the decomposed LB

Figure 8: (left) 5G UPF; (right) IDS

has 48 cores on two sockets, and 2 ConnectX-5Ex with 100
Gbps. One machine is running a traffic generator to generate
100 Gbps traffic sent to the second machine which runs our
runtime. The director is placed on the traffic generator.

5.1 Data Components Optimization
Improvement of the fast table:We assume that the traffic
that is generated contains 50K flows that arrive frequently
(90% of the overall traffic) compared to the rest of the flows.
For the decomposed network functions, we put the control
components on different cores. For all the network functions,
we generate simulated policy configuration requests for the
control components. Figure 7 compares the performance
of the decomposed load balancers to the monolithic ones
using 16 cores. The comparison shows the decomposed one
is better than the monolithic one because the accesses of the
data states and the control states are isolated on different
cores. The Fast table version with 5k entries per core can
achieve better performance because it consolidates the most
frequently accessed flows into a smaller table that can better
fit into the cache.

Improvement of the delaying synchronizing:wenow
evaluate how delaying synchronizing the shared state can
improve the performance. We assume that an IP flow is dis-
tributed to different cores using RSS. We compare the perfor-
mance of the 5G UPF with/ without shared states optimiza-
tion (figure 8). It is shown that with strict per-packet updates
of the shared states, the scalability suffers. In comparison,
delayed synchronization of the states of different cores can
achieve linear scalability.

Figure 9: Replacement in the runtime

Figure 10: Upgrading the offloading components

5.2 Velocity
We play a workload that required a deployment scheme that
places the control component dynamically on a separate
core. Figure 9 shows that our design can support the flexible
dynamic placement of each component within a server. More
important than the speed of the transition, which is largely
attributable to the low-latency nature of the message, is the
fact that traffic did not get dropped or need to be steered
away from this data plane actor during the transition.

For the second part of the velocity experiment, when run-
ning the NF, we periodically upgrade the new offloading
component using a dynamic library through the orchestra-
tor. Using the modified NF model in the director, the orches-
trator will send instructions to the runtime to replace the
new action and change the related data structure accordingly.
Figure 10 shows that in our system, the updates can happen
without disruption.

5.3 Flexible Placement
Placement of Offloading actions: First, we evaluate the
flexible placement of the regular expression matching en-
gine of the IDS. We generate a workload containing only
suspicious flows. We compare the performance of IDS that
co-locates the data actions and offloading action on the same
core and the one that places them on the different cores.
Figure 8 illustrates the relationship between the through-
put, the number of cores that run offloading action, and the
total number of cores that we use. It shows that when the
workload on the regular expression matching engine is high,
adding more cores for the data components will not improve
the performance. A similar situation happens for using 1,2
and 3 offloading cores. When we use 4 offloading cores, the
bottleneck on the data plane is totally removed. The figures

5



perfna’22, , online
Ziyan Wu, Tianming Cui, Arvind Narayanan, Yang Zhang,

Kangjie Lu, Antonia Zhai, Zhi-Li Zhang

(a) Colocation (b) Different cores (c) Comparison

Figure 11: (a) & (b) Performance of network function using colocation/different core placement strategy for of-
floading components under different frequency and computational overhead. (c) The comparison of the two strate-
gies shows that the optimal placement should depend on a specific workload.

also show that fine-grained resource allocation can lead to
efficient resource utilization with less number of cores to
achieve the same performance.

Placement Strategy Analysis: Based on different work-
load characteristics and performance requirements, we have
different optimal placement plans – whether we should co-
locate the data action and offloading action on the same cores.
We can adjust the computation overhead of offloading actions
of IDS by changing the number of the pattern matching rules
it needs to process, and the frequency of its invocations by
changing the inter-arrival of suspicious packets. Both figure
11a and figure 11b show that increased computational com-
plexity of offloading actions and decreased inter-arrival of
offloading actions lead to performance degradation. By plac-
ing them on different cores, figure 11a shows the throughput
can be boosted since the work is offloaded to other cores. The
comparison in figure 11c shows when each placement plan
will outperform the other. When the frequency is lower and
the cost of offloading action is higher, placement on differ-
ent cores tends to perform better. It implies that for optimal
performance, we need to change the placement based on the
workload in the runtime.

6 RELATEDWORK
A number of studies have been devoted to the state man-
agement problem for scaling stateful NFs and the consis-
tency and robustness implications. For example, Split-&-
Merge [20] separates per-flow states and shared states, with
the latter managed centrally; this direction is further ex-
tended in [10, 13]. In contrast, Stateless [12] advocates cen-
trally managing all NF states (in a centralized controller),
whereas S6[24] employs a DHT key-value store maintained
among servers running various NF instances for distributed
state management. The consistency issues due to sharing of
NF states are addressed in [14] which advocates using lock-
ing mechanisms to ensure correctness; this work is further

extended in [11] which employs database techniques. All
these studies factor out only the NF state from NFs and focus
on scaling across servers. There are existing serverless NFV
platform [19, 21–23], providing a containerized environment
for flexible NF deployment, but they do not distinguish data
vs. control components, which are crucial to scale complex
stateful NFs. Without such decoupling and visibility into
the NF’s stateful operations, it is infeasible to scale existing
monolithic “opaque” and “black box” NFs to 100 Gbps and
beyond. OpenBox [7] and NetBricks [16] advocate decom-
posing NFs into reusable modules, but the focus is more on
removing redundant operations to speed up packet process-
ing. In contrast, we tackle challenges in scaling stateful NFs
by calling for a need to re-architect the NF’s state and behav-
ior and develop novel abstractions and a principled approach
for refactoring and scaling stateful NFs.

7 CONCLUSION
Without proper design considerations, monolithic scaling
solutions with coarse resource allocation fail to scale in the
context of 100 Gbps network traffic for modern multi-core
architecture. To fill this gap, a finer granularity of visibility
by separating the control/data/offloading states and actions
of network functions is imperative for optimal performance.
We propose a programming framework GranularNF that
is useful for the reasoning of scaling network functions. We
also provide the runtime and the director, which can sup-
port the dynamic scaling of stateful network functions. We
empirically show the efficacy of the framework using a load
balancer, IDS, and 5G UPF.

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their
comments. The research was supported in part by NSF un-
der Grants CNS-1814322, CNS-1831140, CNS-1836772, CNS-
1901103, CNS-2106771, CNS-2045478 and CCF-2123987.

6



GranularNF: Granular Decomposition of Stateful NFV at 100 Gbps Line Speed and Beyond perfna’22, , online

REFERENCES
[1] [n.d.]. free5gc/gtp5g: GTP-U Linux Kernel Module. https://github.

com/free5gc/gtp5g
[2] [n.d.]. free5gc/upf. https://github.com/free5gc/upf
[3] [n.d.]. GitHub - opcm/pcm: Processor Counter Monitor. https:

//github.com/opcm/pcm
[4] [n.d.]. Home - DPDK. https://www.dpdk.org/
[5] [n.d.]. kokke/tiny-regex-c: Small portable regex in C. https://github.

com/kokke/tiny-regex-c
[6] Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast userspace

packet processing. ANCS 2015 - 11th 2015 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (5 2015),
5–16. https://doi.org/10.1109/ANCS.2015.7110116

[7] Anat Bremler-Barr, Yotam Harchol, and David Hay. 2016. OpenBox: A
Software-Defined Framework for Developing, Deploying, and Man-
aging Network Functions. In Proceedings of the 2016 ACM SIGCOMM
Conference (Florianopolis, Brazil) (SIGCOMM ’16). ACM, New York,
NY, USA, 511–524. https://doi.org/10.1145/2934872.2934875

[8] Shihabur Rahman Chowdhury, Haibo Bian, Tim Bai, and Raouf R
Boutaba David Cheriton. [n.d.]. µNF: A Disaggregated Packet Process-
ing Architecture. ([n. d.]).

[9] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-
tao Shang, and Jinnah Dylan Hosein. 2016. Maglev: A Fast and Reliable
Software Network Load Balancer. In 13th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2016, Santa Clara, CA,
USA, March 16-18, 2016. 523–535. https://www.usenix.org/conference/
nsdi16/technical-sessions/presentation/eisenbud

[10] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,
Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. 2014.
OpenNF: Enabling Innovation in Network Function Control. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM (Chicago, Illi-
nois, USA) (SIGCOMM ’14). ACM, New York, NY, USA, 163–174.
https://doi.org/10.1145/2619239.2626313

[11] Milad Ghaznavi, Elaheh Jalalpour, Bernard Wong, Raouf Boutaba, and
Ali José Mashtizadeh. 2020. Fault Tolerant Service Function Chaining.
In Proc. of ACM SIGCOMM’20 (Virtual Event, USA) (SIGCOMM ’20).
Association for Computing Machinery, New York, NY, USA, 198–210.
https://doi.org/10.1145/3387514.3405863

[12] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017.
Stateless Network Functions: Breaking the Tight Coupling of State
and Processing. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). USENIX Association, Boston,
MA, 97–112. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/kablan

[13] Junaid Khalid et al. 2016. Paving the Way for NFV: Simplify-
ing Middlebox Modifications Using StateAlyzr. In 13th USENIX
NSDI. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/khalid

[14] Junaid Khalid and Aditya Akella. 2019. Correctness and Performance
for Stateful Chained Network Functions. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). USENIX
Association, Boston, MA. https://www.usenix.org/conference/nsdi19/
presentation/khalid

[15] Zili Meng, Jun Bi, Senior Member, Haiping Wang, Chen Sun, and
Hongxin Hu. 2019. MicroNF: An Efficient Framework for Enabling
Modularized Service Chains in NFV. IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS 37 (2019). Issue 8. https://doi.org/10.
1109/JSAC.2019.2927069

[16] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. 2016. NetBricks: Taking the V out of

NFV. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 203–
216. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/panda

[17] Imtiaz Parvez, Ali Rahmati, Ismail Guvenc, Arif I. Sarwat, and Huaiyu
Dai. 2018. A survey on low latency towards 5G: RAN, core network
and caching solutions. IEEE Communications Surveys and Tutorials 20
(10 2018), 3098–3130. Issue 4. https://doi.org/10.1109/COMST.2018.
2841349

[18] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert G.
Greenberg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos,
Hongyu Wu, Changhoon Kim, and Naveen Karri. 2013. Ananta: cloud
scale load balancing. In ACM SIGCOMM 2013 Conference, SIGCOMM’13,
Hong Kong, China, August 12-16, 2013. 207–218. https://doi.org/10.
1145/2486001.2486026

[19] Matteo Pozza, Ashwin Rao, Diego F Lugones, and Sasu Tarkoma. 2021.
FlexState: Flexible State Management of Network Functions. IEEE
Access 9 (2021), 46837–46850.

[20] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew
Warfield. 2013. Split/Merge: System Support for Elastic Execution
in Virtual Middleboxes. In Proc. NSDI.

[21] Junxian Shen, Heng Yu, Zhilong Zheng, Chen Sun, Mingwei Xu, and
Jilong Wang. 2020. Serpens: A high-performance serverless platform
for nfv. In 2020 IEEE/ACM 28th International Symposium on Quality of
Service (IWQoS). IEEE, 1–10.

[22] Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Banerjee. 2020.
Snf: Serverless network functions. In Proceedings of the 11th ACM
Symposium on Cloud Computing. 296–310.

[23] Jianfeng Wang, Tamás Lévai, Zhuojin Li, Marcos AM Vieira, Ramesh
Govindan, and Barath Raghavan. 2021. Galleon: Reshaping the Square
Peg of NFV. arXiv preprint arXiv:2101.06466 (2021).

[24] ShinaeWoo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy,
and Scott Shenker. 2018. Elastic scaling of stateful network functions.
In 15th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 18). 299–312.

[25] Peng Zheng, Wendi Feng, Arvind Narayanan, and Zhi-Li Zhang. 2020.
NFV Performance Profiling on Multi-core Servers. (2020).

[26] Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang. 2019. Towards
a Scalable, Flexible and High Performance NFV Execution Model. In
Proceedings of the 15th International Conference on emerging Networking
EXperiments and Technologies. 68–69.

7


